

# VibeCheck: AI-Powered Motor Quality Control

Motius GmbH December 15, 2025 14:39 (451eeaf)



# VibeCheck: AI-Powered Motor Quality Control

Machine Learning & Al

For a hidden champion of gear motors and drive technology, Motor Testing System Motius developed VibeCheck - an intelligent acoustic testing system that transforms manual motor quality control into automated Al-driven defect detection, achieving breakthrough accuracy in identifying gear damage and bearing faults.

This demonstrates how technical fabric manufacturers like Koenig & Bauer can implement advanced predictive maintenance solutions to enhance quality control and reduce manufacturing defects.

## The Challenge

This leading manufacturer operates 21 quality control cells in continuous two-shift operation, where skilled workers manually assess each electric motor for acoustic anomalies. This process faced several critical limitations:

- Manual dependency: Quality assessment relied entirely on human expertise and subjective judgment
- Scalability constraints: Worker availability limited testing capacity and consistency
- Detection variability: Different operators might classify the same motor differently
- False negative risk: Undetected defects could reach customers, causing field failures

The company needed to maintain their rigorous quality standards while eliminating the bottlenecks and inconsistencies of manual testing.

### **Technical Innovation**

#### **Sensor Technology Development**

Motius developed and validated interchangeable sensor solutions:

- **3-axis body sound microphone**: Primary contact-based vibration sensor for precise defect detection
- Laser vibrometry validation: Proven as interchangeable alternative enabling full automation
- **Non-contact measurement**: Laser system allows motors on AGVs to be tested without manual sensor placement
- Inverter data integration: Correlating electrical parameters with mechanical defects

#### **Advanced Signal Processing**

The system processes complex acoustic signatures to identify:

- **Gear tooth damage**: Detecting scratches and meshing irregularities (2.5-3% defect rate)
- Bearing faults: Identifying grinding and clacking anomalies
- Brake malfunctions: Recognizing dragging and chattering sounds
- Excessive vibrations: Measuring amplitude deviations beyond tolerance

#### **Machine Learning Classification**

A specialized ML pipeline was developed featuring:

- Vibration pattern analysis: Processing 3-axis sensor data to identify defect signatures
- Edge deployment: Real-time inference on industrial-grade single-board computers
- LabVIEW integration: Seamless workflow integration with existing testing infrastructure
- Continuous learning: Model refinement based on operator feedback and rework data

## **Implementation Results**

#### **Performance Metrics**

- >90% accuracy in OK/Not OK classification
- Optimized false negative minimization to prevent defective units reaching customers
- Real-time processing with <2 second classification response
- 100% integration with existing LabVIEW testing framework

#### **Operational Impact**

- Eliminated subjective variability in quality assessment
- Enabled full automation pathway with laser vibrometer deployment on AGV systems
- Reduced manual intervention to only motor connection, with future automation planned
- Enhanced defect localization identifying specific gear stages and bearing positions
- Streamlined workflow allowing continuous testing without worker positioning sensors

#### **Technical Architecture**

- Edge computing deployment for real-time inference without cloud dependency
- **RESTful API integration** enabling seamless LabVIEW communication
- Interchangeable sensor technology supporting both contact and non-contact measurement
- AGV-compatible laser system enabling fully automated testing workflows
- Scalable infrastructure ready for deployment across all 21 quality cells

## **Strategic Value for Technical Fabrics**

This project demonstrates critical capabilities relevant to Koenig & Bauer's manufacturing excellence:

#### **Quality Control Innovation**

Advanced AI systems can transform manual inspection processes, delivering consistent quality assessment across complex manufacturing operations.

#### **Predictive Maintenance Integration**

Multi-sensor data fusion enables early detection of equipment degradation, preventing costly failures and optimizing maintenance schedules.

#### **Manufacturing Intelligence**

Real-time defect classification provides immediate feedback loops, enabling rapid process adjustments and continuous improvement.

#### **Scalable Automation**

Edge-deployed Al solutions deliver enterprise-grade performance while maintaining data sovereignty and operational independence.

## **Technical Fabric Applications**

The VibeCheck methodology directly applies to Koenig & Bauer's operations:

- **Weaving machine monitoring**: Acoustic detection of loom irregularities and tension variations
- Fabric quality assessment: Al-powered defect identification in textile production lines
- **Equipment health monitoring**: Predictive maintenance for industrial weaving and finishing equipment
- **Process optimization**: Real-time feedback systems for maintaining consistent fabric specifications

Project developed in partnership with a leading drive technology manufacturer's innovation team, demonstrating Motius's expertise in industrial AI and predictive maintenance solutions.